1,707 research outputs found

    First observations of separated atmospheric ν_μ and ν̅ _μ events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of ν_μ and ν̅ _μ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving R^(data)_(up/down/R^(MC)_(up/down) = 0:62^(+0.19)_(0:14)(stat.) ± 0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field ν_μ and ν̅ _μ interactions are separated. The ratio of ν̅ _μ to ν_μ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R^(data)_(ν_μ/ν̅ _μ) / R^(MC)_(ν_μ/ν̅ _μ) = 0.96^(+0:38)_(0.27)(stat.) ± 0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for ν_μ and ν̅ _μ

    Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam

    Get PDF
    This Letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rates and energy spectra of charged current ν_μ interactions are compared in two detectors located along the beam axis at distances of 1 and 735 km. With 1.27×10^(20) 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336±14 events. The data are consistent with ν_μ disappearance via oscillations with Δm_(32)^2|=2.74_(-0.26)^(+0.44)×10^(-3)  eV^2 and sin^2(2θ_(23))>0.87 (68% C.L.)

    First Direct Observation of Muon Antineutrino Disappearance

    Get PDF
    This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters

    Electron Neutrino and Antineutrino Appearance in the Full MINOS Data Sample

    Get PDF
    We report on ν_e and ν_e appearance in ν_μ and ν_μ beams using the full MINOS data sample. The comparison of these ν_e and ν_e appearance data at a 735 km baseline with θ_(13) measurements by reactor experiments probes δ, the θ_(23) octant degeneracy, and the mass hierarchy. This analysis is the first use of this technique and includes the first accelerator long-baseline search for ν_μ→ν_e. Our data disfavor 31% (5%) of the three-parameter space defined by δ, the octant of the θ_(23), and the mass hierarchy at the 68% (90%) C.L. We measure a value of 2sin^2(2θ_(13))sin^2(θ_(23)) that is consistent with reactor experiments

    High Energy Physics Opportunities Using Reactor Antineutrinos

    Get PDF
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources ofantineutrinos that continue to play a vital role in the US neutrino physicsprogram. The US reactor antineutrino physics community is a diverse interestgroup encompassing many detection technologies and many particle physicstopics, including Standard Model and short-baseline oscillations, BSM physicssearches, and reactor flux and spectrum modeling. The community's aims offerstrong complimentary with numerous aspects of the wider US neutrino program andhave direct relevance to most of the topical sub-groups composing the Snowmass2021 Neutrino Frontier. Reactor neutrino experiments also have a directsocietal impact and have become a strong workforce and technology developmentpipeline for DOE National Laboratories and universities. This white paper,prepared as a submission to the Snowmass 2021 community organizing exercise,will survey the state of the reactor antineutrino physics field and summarizethe ways in which current and future reactor antineutrino experiments can playa critical role in advancing the field of particle physics in the next decade.<br
    • …
    corecore